Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(1): pgae006, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269070

RESUMO

A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.

2.
Nature ; 625(7993): 119-125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030728

RESUMO

Intermediate species in the assembly of amyloid filaments are believed to play a central role in neurodegenerative diseases and may constitute important targets for therapeutic intervention1,2. However, structural information about intermediate species has been scarce and the molecular mechanisms by which amyloids assemble remain largely unknown. Here we use time-resolved cryogenic electron microscopy to study the in vitro assembly of recombinant truncated tau (amino acid residues 297-391) into paired helical filaments of Alzheimer's disease or into filaments of chronic traumatic encephalopathy3. We report the formation of a shared first intermediate amyloid filament, with an ordered core comprising residues 302-316. Nuclear magnetic resonance indicates that the same residues adopt rigid, ß-strand-like conformations in monomeric tau. At later time points, the first intermediate amyloid disappears and we observe many different intermediate amyloid filaments, with structures that depend on the reaction conditions. At the end of both assembly reactions, most intermediate amyloids disappear and filaments with the same ordered cores as those from human brains remain. Our results provide structural insights into the processes of primary and secondary nucleation of amyloid assembly, with implications for the design of new therapies.


Assuntos
Doença de Alzheimer , Amiloide , Encefalopatia Traumática Crônica , Emaranhados Neurofibrilares , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Encefalopatia Traumática Crônica/metabolismo , Encefalopatia Traumática Crônica/patologia , Microscopia Crioeletrônica , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/ultraestrutura , Proteínas tau/química , Proteínas tau/metabolismo , Proteínas tau/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Fatores de Tempo
3.
Mol Cell ; 84(3): 506-521.e11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159565

RESUMO

Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.


Assuntos
Domínio Catalítico , Fator de Iniciação 2 em Eucariotos , Proteína Fosfatase 1 , Humanos , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
4.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993242

RESUMO

Phase transitions of cellular proteins and lipids play a key role in governing the organisation and coordination of intracellular biology. The frequent juxtaposition of proteinaceous biomolecular condensates to cellular membranes raises the intriguing prospect that phase transitions in proteins and lipids could be co-regulated. Here we investigate this possibility in the ribonucleoprotein (RNP) granule-ANXA11-lysosome ensemble, where ANXA11 tethers RNP granule condensates to lysosomal membranes to enable their co-trafficking. We show that changes to the protein phase state within this system, driven by the low complexity ANXA11 N-terminus, induce a coupled phase state change in the lipids of the underlying membrane. We identify the ANXA11 interacting proteins ALG2 and CALC as potent regulators of ANXA11-based phase coupling and demonstrate their influence on the nanomechanical properties of the ANXA11-lysosome ensemble and its capacity to engage RNP granules. The phenomenon of protein-lipid phase coupling we observe within this system offers an important template to understand the numerous other examples across the cell whereby biomolecular condensates closely juxtapose cell membranes.

5.
Nat Commun ; 13(1): 6381, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289199

RESUMO

In response to improper kinetochore-microtubule attachments in mitosis, the spindle assembly checkpoint (SAC) assembles the mitotic checkpoint complex (MCC) to inhibit the anaphase-promoting complex/cyclosome, thereby delaying entry into anaphase. The MCC comprises Mad2:Cdc20:BubR1:Bub3. Its assembly is catalysed by unattached kinetochores on a Mad1:Mad2 platform. Mad1-bound closed-Mad2 (C-Mad2) recruits open-Mad2 (O-Mad2) through self-dimerization. This interaction, combined with Mps1 kinase-mediated phosphorylation of Bub1 and Mad1, accelerates MCC assembly, in a process that requires O-Mad2 to C-Mad2 conversion and concomitant binding of Cdc20. How Mad1 phosphorylation catalyses MCC assembly is poorly understood. Here, we characterized Mps1 phosphorylation of Mad1 and obtained structural insights into a phosphorylation-specific Mad1:Cdc20 interaction. This interaction, together with the Mps1-phosphorylation dependent association of Bub1 and Mad1, generates a tripartite assembly of Bub1 and Cdc20 onto the C-terminal domain of Mad1 (Mad1CTD). We additionally identify flexibility of Mad1:Mad2 that suggests how the Cdc20:Mad1CTD interaction brings the Mad2-interacting motif (MIM) of Cdc20 near O-Mad2. Thus, Mps1-dependent formation of the MCC-assembly scaffold functions to position and orient Cdc20 MIM near O-Mad2, thereby catalysing formation of C-Mad2:Cdc20.


Assuntos
Proteínas de Ciclo Celular , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Mitose , Catálise , Proteínas Mad2/metabolismo , Fuso Acromático/metabolismo , Proteínas Cdc20/metabolismo
6.
Nat Microbiol ; 7(10): 1686-1701, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36123441

RESUMO

During bacterial cell division, filaments of tubulin-like FtsZ form the Z-ring, which is the cytoplasmic scaffold for divisome assembly. In Escherichia coli, the actin homologue FtsA anchors the Z-ring to the membrane and recruits divisome components, including bitopic FtsN. FtsN regulates the periplasmic peptidoglycan synthase FtsWI. To characterize how FtsA regulates FtsN, we applied electron microscopy to show that E. coli FtsA forms antiparallel double filaments on lipid monolayers when bound to the cytoplasmic tail of FtsN. Using X-ray crystallography, we demonstrate that Vibrio maritimus FtsA crystallizes as an equivalent double filament. We identified an FtsA-FtsN interaction site in the IA-IC interdomain cleft of FtsA using X-ray crystallography and confirmed that FtsA forms double filaments in vivo by site-specific cysteine cross-linking. FtsA-FtsN double filaments reconstituted in or on liposomes prefer negative Gaussian curvature, like those of MreB, the actin-like protein of the elongasome. We propose that curved antiparallel FtsA double filaments together with treadmilling FtsZ filaments organize septal peptidoglycan synthesis in the division plane.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Actinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipídeos , Lipossomos , Proteínas de Membrana/metabolismo , Peptidoglicano/metabolismo , Tubulina (Proteína)/metabolismo
7.
Cell Rep ; 37(1): 109777, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610306

RESUMO

Non-degradative ubiquitin chains and phosphorylation events govern signaling responses by innate immune receptors. The deubiquitinase CYLD in complex with SPATA2 is recruited to receptor signaling complexes by the ubiquitin ligase LUBAC and regulates Met1- and Lys63-linked polyubiquitin and receptor signaling outcomes. Here, we investigate the molecular determinants of CYLD activity. We reveal that two CAP-Gly domains in CYLD are ubiquitin-binding domains and demonstrate a requirement of CAP-Gly3 for CYLD activity and regulation of immune receptor signaling. Moreover, we identify a phosphorylation switch outside of the catalytic USP domain, which activates CYLD toward Lys63-linked polyubiquitin. The phosphorylated residue Ser568 is a novel tumor necrosis factor (TNF)-regulated phosphorylation site in CYLD and works in concert with Ser418 to enable CYLD-mediated deubiquitination and immune receptor signaling. We propose that phosphorylated CYLD, together with SPATA2 and LUBAC, functions as a ubiquitin-editing complex that balances Lys63- and Met1-linked polyubiquitin at receptor signaling complexes to promote LUBAC signaling.


Assuntos
Enzima Desubiquitinante CYLD/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , Enzima Desubiquitinante CYLD/antagonistas & inibidores , Enzima Desubiquitinante CYLD/genética , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/metabolismo , Humanos , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Fosforilação , Poliubiquitina/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina/metabolismo
8.
Genes Dev ; 35(21-22): 1510-1526, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593603

RESUMO

Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3' end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3' end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3' end processing machinery are required to coordinate cleavage and polyadenylation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Poliadenilação , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
9.
Elife ; 102021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519269

RESUMO

The mTORC1 kinase complex regulates cell growth, proliferation, and survival. Because mis-regulation of DEPTOR, an endogenous mTORC1 inhibitor, is associated with some cancers, we reconstituted mTORC1 with DEPTOR to understand its function. We find that DEPTOR is a unique partial mTORC1 inhibitor that may have evolved to preserve feedback inhibition of PI3K. Counterintuitively, mTORC1 activated by RHEB or oncogenic mutation is much more potently inhibited by DEPTOR. Although DEPTOR partially inhibits mTORC1, mTORC1 prevents this inhibition by phosphorylating DEPTOR, a mutual antagonism that requires no exogenous factors. Structural analyses of the mTORC1/DEPTOR complex showed DEPTOR's PDZ domain interacting with the mTOR FAT region, and the unstructured linker preceding the PDZ binding to the mTOR FRB domain. The linker and PDZ form the minimal inhibitory unit, but the N-terminal tandem DEP domains also significantly contribute to inhibition.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli , Regulação da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Modelos Moleculares , Domínios PDZ , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes , Serina-Treonina Quinases TOR/genética
10.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155117

RESUMO

Wnt signals bind to Frizzled receptors to trigger canonical and noncanonical signaling responses that control cell fates during animal development and tissue homeostasis. All Wnt signals are relayed by the hub protein Dishevelled. During canonical (ß-catenin-dependent) signaling, Dishevelled assembles signalosomes via dynamic head-to-tail polymerization of its Dishevelled and Axin (DIX) domain, which are cross-linked by its Dishevelled, Egl-10, and Pleckstrin (DEP) domain through a conformational switch from monomer to domain-swapped dimer. The domain-swapped conformation of DEP masks the site through which Dishevelled binds to Frizzled, implying that DEP domain swapping results in the detachment of Dishevelled from Frizzled. This would be incompatible with noncanonical Wnt signaling, which relies on long-term association between Dishevelled and Frizzled. It is therefore likely that DEP domain swapping is differentially regulated during canonical and noncanonical Wnt signaling. Here, we use NMR spectroscopy and cell-based assays to uncover intermolecular contacts in the DEP dimer that are essential for its stability and for Dishevelled function in relaying canonical Wnt signals. These contacts are mediated by an intrinsically structured sequence spanning a conserved phosphorylation site upstream of the DEP domain that serves to clamp down the swapped N-terminal α-helix onto the structural core of a reciprocal DEP molecule in the domain-swapped configuration. Mutations of this phosphorylation site and its cognate surface on the reciprocal DEP core attenuate DEP-dependent dimerization of Dishevelled and its canonical signaling activity in cells without impeding its binding to Frizzled. We propose that phosphorylation of this crucial residue could be employed to switch off canonical Wnt signaling.


Assuntos
Proteínas Desgrenhadas/química , Proteínas Desgrenhadas/metabolismo , Sequência Conservada , Proteínas Desgrenhadas/genética , Humanos , Modelos Moleculares , Mutação/genética , Fosforilação , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Serina/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Via de Sinalização Wnt
11.
Commun Biol ; 4(1): 528, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953332

RESUMO

SWI/SNF (BAF) chromatin remodelling complexes are key regulators of gene expression programs, and attractive drug targets for cancer therapies. Here we show that the N-terminus of the BAF155/SMARCC1 subunit contains a putative DNA-binding MarR-like domain, a chromodomain and a BRCT domain that are interconnected to each other to form a distinct module. In this structure the chromodomain makes interdomain interactions and has lost its canonical function to bind to methylated lysines. The structure provides new insights into the missense mutations that target this module in cancer. This study also reveals two adjacent, highly-conserved pockets in a cleft between the domains that form a potential binding site, which can be targeted with small molecules, offering a new strategy to target SWI/SNF complexes.


Assuntos
Mutação , Neoplasias/genética , Preparações Farmacêuticas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Conformação Proteica , Fatores de Transcrição/genética
12.
EMBO Rep ; 22(7): e52242, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34013668

RESUMO

During metaphase, in response to improper kinetochore-microtubule attachments, the spindle assembly checkpoint (SAC) activates the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C). This process is orchestrated by the kinase Mps1, which initiates the assembly of the MCC onto kinetochores through a sequential phosphorylation-dependent signalling cascade. The Mad1-Mad2 complex, which is required to catalyse MCC formation, is targeted to kinetochores through a direct interaction with the phosphorylated conserved domain 1 (CD1) of Bub1. Here, we present the crystal structure of the C-terminal domain of Mad1 (Mad1CTD ) bound to two phosphorylated Bub1CD1 peptides at 1.75 Å resolution. This interaction is mediated by phosphorylated Bub1 Thr461, which not only directly interacts with Arg617 of the Mad1 RLK (Arg-Leu-Lys) motif, but also directly acts as an N-terminal cap to the CD1 α-helix dipole. Surprisingly, only one Bub1CD1 peptide binds to the Mad1 homodimer in solution. We suggest that this stoichiometry is due to inherent asymmetry in the coiled-coil of Mad1CTD and has implications for how the Mad1-Bub1 complex at kinetochores promotes efficient MCC assembly.


Assuntos
Proteínas de Ciclo Celular , Cinetocoros , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Fosforilação , Transdução de Sinais , Fuso Acromático/metabolismo
13.
Angew Chem Int Ed Engl ; 60(19): 10919-10927, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33616271

RESUMO

Many natural metalloenzymes assemble from proteins and biosynthesised complexes, generating potent catalysts by changing metal coordination. Here we adopt the same strategy to generate artificial metalloenzymes (ArMs) using ligand exchange to unmask catalytic activity. By systematically testing RuII (η6 -arene)(bipyridine) complexes designed to facilitate the displacement of functionalised bipyridines, we develop a fast and robust procedure for generating new enzymes via ligand exchange in a protein that has not evolved to bind such a complex. The resulting metal cofactors form peptidic coordination bonds but also retain a non-biological ligand. Tandem mass spectrometry and 19 F NMR spectroscopy were used to characterise the organometallic cofactors and identify the protein-derived ligands. By introduction of ruthenium cofactors into a 4-helical bundle, transfer hydrogenation catalysts were generated that displayed a 35-fold rate increase when compared to the respective small molecule reaction in solution.


Assuntos
Metaloproteínas/metabolismo , Compostos Organometálicos/química , Rutênio/química , Catálise , Flúor , Hidrogenação , Ligantes , Espectroscopia de Ressonância Magnética , Metaloproteínas/química , Estrutura Molecular , Compostos Organometálicos/metabolismo , Rutênio/metabolismo
14.
Nat Commun ; 11(1): 4940, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009411

RESUMO

The HUSH complex represses retroviruses, transposons and genes to maintain the integrity of vertebrate genomes. HUSH regulates deposition of the epigenetic mark H3K9me3, but how its three core subunits - TASOR, MPP8 and Periphilin - contribute to assembly and targeting of the complex remains unknown. Here, we define the biochemical basis of HUSH assembly and find that its modular architecture resembles the yeast RNA-induced transcriptional silencing complex. TASOR, the central HUSH subunit, associates with RNA processing components. TASOR is required for H3K9me3 deposition over LINE-1 repeats and repetitive exons in transcribed genes. In the context of previous studies, this suggests that an RNA intermediate is important for HUSH activity. We dissect the TASOR and MPP8 domains necessary for transgene repression. Structure-function analyses reveal TASOR bears a catalytically-inactive PARP domain necessary for targeted H3K9me3 deposition. We conclude that TASOR is a multifunctional pseudo-PARP that directs HUSH assembly and epigenetic regulation of repetitive genomic targets.


Assuntos
Elementos de DNA Transponíveis/genética , Epigênese Genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/metabolismo , Sítios de Ligação , Éxons/genética , Genoma , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Metilação , NAD/metabolismo , Proteínas Nucleares/química , Fosfoproteínas/metabolismo , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Gênica
15.
Nucleic Acids Res ; 48(18): 10313-10328, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976585

RESUMO

Transcription of integrated DNA from viruses or transposable elements is tightly regulated to prevent pathogenesis. The Human Silencing Hub (HUSH), composed of Periphilin, TASOR and MPP8, silences transcriptionally active viral and endogenous transgenes. HUSH recruits effectors that alter the epigenetic landscape and chromatin structure, but how HUSH recognizes target loci and represses their expression remains unclear. We identify the physicochemical properties of Periphilin necessary for HUSH assembly and silencing. A disordered N-terminal domain (NTD) and structured C-terminal domain are essential for silencing. A crystal structure of the Periphilin-TASOR minimal core complex shows Periphilin forms an α-helical homodimer, bound by a single TASOR molecule. The NTD forms insoluble aggregates through an arginine/tyrosine-rich sequence reminiscent of low-complexity regions from self-associating RNA-binding proteins. Residues required for TASOR binding and aggregation were required for HUSH-dependent silencing and genome-wide deposition of repressive mark H3K9me3. The NTD was functionally complemented by low-complexity regions from certain RNA-binding proteins and proteins that form condensates or fibrils. Our work suggests the associative properties of Periphilin promote HUSH aggregation at target loci.


Assuntos
Antígenos de Neoplasias/ultraestrutura , Proteínas Nucleares/ultraestrutura , Proteínas de Ligação a RNA/química , Transcrição Gênica , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Cristalografia por Raios X , Elementos de DNA Transponíveis/genética , Epigênese Genética/genética , Inativação Gênica , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Agregados Proteicos/genética , Ligação Proteica/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Vírus/genética
16.
Nature ; 587(7834): 495-498, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32908308

RESUMO

Influenza A virus causes millions of severe cases of disease during annual epidemics. The most abundant protein in influenza virions is matrix protein 1 (M1), which mediates virus assembly by forming an endoskeleton beneath the virus membrane1. The structure of full-length M1, and how it oligomerizes to mediate the assembly of virions, is unknown. Here we determine the complete structure of assembled M1 within intact virus particles, as well as the structure of M1 oligomers reconstituted in vitro. We find that the C-terminal domain of M1 is disordered in solution but can fold and bind in trans to the N-terminal domain of another M1 monomer, thus polymerizing M1 into linear strands that coat the interior surface of the membrane of the assembling virion. In the M1 polymer, five histidine residues-contributed by three different monomers of M1-form a cluster that can serve as the pH-sensitive disassembly switch after entry into a target cell. These structures therefore reveal mechanisms of influenza virus assembly and disassembly.


Assuntos
Microscopia Crioeletrônica , Vírus da Influenza A Subtipo H3N2/química , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/ultraestrutura , Animais , Cães , Células HEK293 , Histidina , Humanos , Concentração de Íons de Hidrogênio , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A Subtipo H3N2/ultraestrutura , Células Madin Darby de Rim Canino , Modelos Moleculares , Proteínas da Matriz Viral/metabolismo , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura
17.
Structure ; 28(6): 674-689.e11, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32375023

RESUMO

Centrioles are cylindrical assemblies whose peripheral microtubule array displays a 9-fold rotational symmetry that is established by the scaffolding protein SAS6. Centriole symmetry can be broken by centriole-associated structures, such as the striated fibers in Chlamydomonas that are important for ciliary function. The conserved protein CCDC61/VFL3 is involved in this process, but its exact role is unclear. Here, we show that CCDC61 is a paralog of SAS6. Crystal structures of CCDC61 demonstrate that it contains two homodimerization interfaces that are similar to those found in SAS6, but result in the formation of linear filaments rather than rings. Furthermore, we show that CCDC61 binds microtubules and that residues involved in CCDC61 microtubule binding are important for ciliary function in Chlamydomonas. Together, our findings suggest that CCDC61 and SAS6 functionally diverged from a common ancestor while retaining the ability to scaffold the assembly of basal body-associated structures or centrioles, respectively.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Chlamydomonas/fisiologia , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Linhagem Celular , Chlamydomonas/classificação , Cristalografia por Raios X , Células HEK293 , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Filogenia , Conformação Proteica , Domínios Proteicos , Multimerização Proteica
18.
Biochemistry ; 58(29): 3144-3154, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31260268

RESUMO

The c-MYC transcription factor is a master regulator of cell growth and proliferation and is an established target for cancer therapy. This basic helix-loop-helix Zip protein forms a heterodimer with its obligatory partner MAX, which binds to DNA via the basic region. Considerable research efforts are focused on targeting the heterodimerization interface and the interaction of the complex with DNA. The only available crystal structure is that of a c-MYC:MAX complex artificially tethered by an engineered disulfide linker and prebound to DNA. We have carried out a detailed structural analysis of the apo form of the c-MYC:MAX complex, with no artificial linker, both in solution using nuclear magnetic resonance (NMR) spectroscopy and by X-ray crystallography. We have obtained crystal structures in three different crystal forms, with resolutions between 1.35 and 2.2 Å, that show extensive helical structure in the basic region. Determination of the α-helical propensity using NMR chemical shift analysis shows that the basic region of c-MYC and, to a lesser extent, that of MAX populate helical conformations. We have also assigned the NMR spectra of the c-MYC basic helix-loop-helix Zip motif in the absence of MAX and showed that the basic region has an intrinsic helical propensity even in the absence of its dimerization partner. The presence of helical structure in the basic regions in the absence of DNA suggests that the molecular recognition occurs via a conformational selection rather than an induced fit. Our work provides both insight into the mechanism of DNA binding and structural information to aid in the development of MYC inhibitors.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Cristalografia por Raios X/métodos , Proteínas de Ligação a DNA/química , DNA/química , Sequências Hélice-Alça-Hélice/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Proteínas Repressoras/química , Fatores de Transcrição/química , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Galinhas , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Mol Cell ; 74(3): 436-451.e7, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30926242

RESUMO

The evolutionarily related deubiquitinating enzymes (DUBs) USP25 and USP28 comprise an identical overall domain architecture but are functionally non-redundant: USP28 stabilizes c-MYC and other nuclear proteins, and USP25 regulates inflammatory TRAF signaling. We here compare molecular features of USP25 and USP28. Active enzymes form distinctively shaped dimers, with a dimerizing insertion spatially separating independently active catalytic domains. In USP25, but not USP28, two dimers can form an autoinhibited tetramer, where a USP25-specific, conserved insertion sequence blocks ubiquitin binding. In full-length enzymes, a C-terminal domain with a previously unknown fold has no impact on oligomerization, but N-terminal regions affect the dimer-tetramer equilibrium in vitro. We confirm oligomeric states of USP25 and USP28 in cells and show that modulating oligomerization affects substrate stabilization in accordance with in vitro activity data. Our work highlights how regions outside of the catalytic domain enable a conceptually intriguing interplay of DUB oligomerization and activity.


Assuntos
Inflamação/genética , Conformação Proteica , Ubiquitina Tiolesterase/genética , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/genética , Humanos , Inflamação/patologia , Mutação/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Multimerização Proteica/genética , Proteínas Proto-Oncogênicas c-myb/química , Proteínas Proto-Oncogênicas c-myb/genética , Transdução de Sinais/genética , Especificidade por Substrato , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Ubiquitina/genética , Ubiquitina Tiolesterase/química
20.
Nat Commun ; 9(1): 1731, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712910

RESUMO

Centrosomes are required for faithful chromosome segregation during mitosis. They are composed of a centriole pair that recruits and organizes the microtubule-nucleating pericentriolar material. Centriole duplication is tightly controlled in vivo and aberrations in this process are associated with several human diseases, including cancer and microcephaly. Although factors essential for centriole assembly, such as STIL and PLK4, have been identified, the underlying molecular mechanisms that drive this process are incompletely understood. Combining protein proximity mapping with high-resolution structural methods, we identify CEP85 as a centriole duplication factor that directly interacts with STIL through a highly conserved interaction interface involving a previously uncharacterised domain of STIL. Structure-guided mutational analyses in vivo demonstrate that this interaction is essential for efficient centriolar targeting of STIL, PLK4 activation and faithful daughter centriole assembly. Taken together, our results illuminate a molecular mechanism underpinning the spatiotemporal regulation of the early stages of centriole duplication.


Assuntos
Centríolos/metabolismo , Segregação de Cromossomos , Proteínas do Citoesqueleto/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Fusão Oncogênica/química , Proteínas Serina-Treonina Quinases/química , Sítios de Ligação , Linhagem Celular Tumoral , Centríolos/ultraestrutura , Cristalografia por Raios X , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitose , Modelos Moleculares , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...